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Abstract: - Globally shortest path problems have increasing demand due to voluminous datasets in 

applications like roadmaps, web search engines, mobile data sets, etc., Computing shortest path between 

nodes in a given directed graph is a very common problem. Among the various shortest path algorithms, 

Dijkstra’s shortest path algorithm [1] is said to have better performance with regard to run time than the other 

algorithms. The output of Dijkstra’s shortest path algorithm can be improved with speedup techniques.  In this 

paper a new combined speedup technique based on three speedup techniques were combined and each  

technique is parallelised individually and the performance of the combination is measured with respect to pre-

processing time, runtime and number of nodes visited in random graphs, planar graphs and real world data 

sets. 

 

Key-Words: - Bidirectional Arcflags, Multilevel method, Multilevel Arcflags, Parallelized Multilevel 

Arcflags.

1 Introduction 
In general many applications require shortest path 

queries to solve the problems. Some of the 

applications are railway networks [2],[3], 

roadmaps [3] , web search engines [3] , mobile 

applications, etc., The need for shortest path 

queries have extended due to online applications, 

where the search time is reduced due to shortest 

path queries. Shortest path problems are 

classically solved under Greedy procedures. The 

commonly known shortest path algorithms of 

greedy are Dijkstra’s Algorithm, Bellmann-Ford 

Algorithm, Floyd-Warshall’s Algorithm, etc., 

Dijkstra’s algorithm [1],[2]  is the standard 

algorithm which computes shortest path in 

directed graphs with non negative edge lengths. 

Dijkstra’s algorithm with Fibonacci heaps is the 

fastest algorithm for the general case of arbitrary 

nonnegative edge lengths. The performance of 

Dijkstra’s algorithm can be extended using basic 

speedup techniques like bidirectional search, goal 

directed search, shortest path containers, 

multilevel approach, reach based method, arc flag 

method, etc., to find the shortest path in optimal 

time. The basic speedup techniques [3],[4] were 

combined in different flavors and their 

performance were improved. These basic speedup 

techniques and combined speedup techniques 

cannot be always guaranteed to prove to be faster 

than the original Dijkstra’s algorithm. However it 

can be empirically shown that they certainly 

improve the speedup of the applications where we 

use many real data sets like roadmaps [5], railway 

networks [2],[6] and timetable information 

systems [6], etc.,.  

The shortest path problem has two phases of 

implementation for applications where there is a 

need for voluminous data sets. They are pre-

processing phase and shortest path computation 

phase. Pre-processing techniques were identified 

to make the applications to work fast. It makes to 

work fast in very large networks, where there is a 

need for many 1 to n shortest path computations. 

The speed up factor is found to be high in 

techniques where pre-processing the network is 

done at the design phase of the network itself 

[2],[3].  In the shortest path computation phase, 

actual speedup techniques integrated with 

Dijkstra’s algorithm works to give the result in 

optimal time. Hence the output of the system can 

be measured with output parameters like pre-

processing time, runtime(shortest path 

computation time), Number of nodes visited 

during shortest path computation, etc., 

In this paper, a combination of the Bidirectional 

Arcflags (Goal-directed search) and Multilevel 

technique has been considered to improve the 

speedup in terms of run time  and vertex visit 

count in various graph types such as random 

graphs, planar graphs and real world data sets(map 

of Tamilnadu). Pre-processing time of the system 
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also reduced due to parallelism and thereby the 

speedup of the system got improved. 

2 Related Work 
2.1 Combining Speedup techniques 

A detailed view of the existing combinations of 

various speedup technique are discussed in  [3], 

[4].  The speedup techniques includes 

Bidirectional search [3], [4], [7], goal directed 

search [8],[9], Hierarchical approaches [10],[11], 

Reach Highway  hierarchies [5] and Transit node 

routing [12] and goal directed technique include 

ALT [8] and Arcflags [13]. Especially in arc flag 

approach [13] various graph partitioning methods 

adapted improves the capacity of pre-processing. 

The combinations Goal-Directed Search and 

Multilevel Approach, Goal-Directed Search and 

Shortest-Path Containers[14], Bidirectional Search 

and Multilevel Approach [15], Bidirectional 

Search and Shortest-Path Containers, Multilevel 

Approach and Shortest-Path Containers with its 

speedup with respect to running time and vertices 

visited were analysed in [3]. Combination of reach 

with landmark based A* search (ALT algorithm) 

[8]. Another variation of this combination is to 

store the landmark distances of nodes with high 

reach values and this results in low memory 

consumption. HH* combines Highway 

Hierarchies approaches [10,[11] with landmark 

based A* search [8]. Here the landmarks are not 

chosen from the original graph, but for some level 

k of the HH (highway hierarchy), which reduces 

the pre-processing time and memory consumption.  

SHARC combines Highway hierarchies [10] with 

Arc-flags [13] and produces a fast unidirectional 

query algorithm, which is advantageous in 

scenarios where bidirectional search is prohibitive, 

like road networks.  Combining hierarchical 

approaches with goal directed search [16], 

[17]have good results in real world problems. 

In Highway Node routing results of shared-

memory parallel variants of the multi-level overlay 

graph construction necessary for HNR are 

discussed in [18]. A high number of updates per 

time is desirable to keep the replies to the shortest 

path queries as up-to-date as possible. On a 

modern processor, the repeated precomputation 

step for HNR takes roughly two minutes. 

 The parallel programming constructs are 

applied to Bidirectional search [19],  Landmark 

technique[20],  and Bidirectional arc flags[21] 

using OpenMP [22], which proves to give better 

results in speedup factor in random and planar and 

real world graphs. 

Shared memory parallel programming[18] 

constructs of OpenMP ([22] are considered in the 

preprocessing phase of graphs. Using the work 

sharing constructs, the time taken for 

preprocessing can be reduced. 

2.2 Parallel Programming 

 Shared memory parallel programming 

adapts the principles of Amdahl’s law. Amdahl’s 

law [23] states that if T1 denotes the execution 

time of an application on 1 processor, then in an 

ideal situation, the execution time on P processors 

should be T1/P. If TP denotes the execution time 

on P processors, then the ratio 

P
TTS /

1
=                                                                      

is referred to as the parallel speedup and is a 

measure for the success of the parallelization. 

However, a number of obstacles usually have to be 

overcome before perfect speedup is achievable. 

Virtually all programs contain some regions that 

are suitable for parallelization and other regions 

that are not. By using an increasing number of 

processors, the time spent in the parallelized parts 

of the program is reduced, but the sequential 

section remains the same. Eventually the 

execution time is completely dominated by the 

time taken to compute the sequential portion, 

which puts an upper limit on the expected 

speedup. This effect, known as Amdahl’s law, can 

be formulated as 

))1(/(

1
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f
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Where fpar is the parallel fraction of the code 

and P is the number of processors. In the ideal 

case when all of the code runs in parallel, fpar = 1, 

the expected speedup is equal to the number of 

processors. 

2.3 Parallelized Bidirectional dijkstra’s 

algorithm with arc flag  
DEFINITION - BIDIRECTIONAL ARC FLAGS 

VECTOR 
Let G =(V,E) be a weighted graph 

together with a weight function l then for each arc 

e belonging to  E the nodes in the regions ri, which 

are associated with the true entries of the arc flag 

vector of e, constitute a consistent bidirectional 

arc flag vector. 

Let G= (V, E) be a weighted graph 

together with the weight function l. We call a set 

of nodes C sub set of V, as bidirectional arc flag 

vector [13]. A bidirectional arc flag vector C 

associated with an arc from u to v is called 

consistent if for all shortest path from u to t that 

start with the arc from u to v, the target node t is in 

C. Similarly if for all shortest path from t to u that 

start with the arc from t to s, the target node u is in 

C. 

Consider the shortest path p from s to t 

that is found by a Dijkstra’s algorithm. If for all 

arcs, e belonging to E, the target node t is in the 
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bidirectional arc flag vector C of e, then the path p 

will also be found by bidirectional Dijkstra’s 

algorithm with Arc Flags. Similarly, if the shortest 

path from t to s is found to be P1 by Dijkstra’s 

algorithm, the same will also be found by 

bidirectional Dijkstra’s algorithm with arc-flags. 

This is because arc-flags do not change the order 

in which the arcs are processed. A sub path of a 

shortest path is again a shortest path, so for all arcs 

from u to v belonging to P, the sub path of P from 

u to t is a shortest path. Hence by definition of the 

consistent arc flag vector [13] t belongs to 

bidirectional arc flag vector C. The above 

procedure when done simultaneously in the 

forward and backward directions has been proved 

to lower the run time by a reasonable amount.  

The parallelizing bidirectional Dijkstra 

algorithm includes two phases of implementation: 

preprocessing of arc flags and shortest path 

computation. The preprocessing phase of Arcflags 

deals with calculating the arc-flag entries for all 

arcs [13]. The arc flag preprocessing phase is 

outlined in Algorithm 1. This can be achieved by 

computing a shortest path tree from every arc a to 

all nodes in the graph—a one-to-all shortest-path 

computation from the head node of arc a. The 

computation is done by a standard algorithm of 

Dijkstra, which stops when all nodes are 

permanently marked. During this computation, if a 

node v is settled, the arc-flag entry fa(r(v)) is set to 

true for the region r(v) containing node v. 

A generalization of a partition-based arc 

labeling technique that is referred to as the arc-

flag approach [13] in combination with 

bidirectional method is discussed here. The basic 

idea of the arcflag method is to use a simple 

rectangular geographic partition. The arc-flag 

approach divides the graph into regions and 

gathers information for each arc on whether this 

arc is on a shortest path into a given region. In this 

experimental setup, the graph is divided into a 6x6 

grid. For each arc this information is stored in a 

vector. The vector contains a flag for each region 

of the graph, indicating whether this arc is on a 

shortest path into that particular region. The vector 

is called the arcflag vector[13] and the entries in 

the arc-flag vector are called the arc-flags. The 

size of each vector is determined by the number of 

regions and the number of vectors is determined 

by the number of arcs. Arc-flags are used in the 

Dijkstra’s shortest path computation to avoid 

exploring unnecessary paths. When this technique 

is combined with Bidirectional method, it 

improves the speedup of shortest path queries 

especially in real world graphs. 

 

 

2.4  Preprocessing for Multilevel method 
An overlay graph of a given graph G = (V, 

E) on a subset S of V is a graph with vertex set S 

and edges corresponding to shortest paths in G. In 

particular, we consider variations of the multilevel 

overlay graph, a method to speedup exact single-

pair shortest path computation. We restrict 

ourselves to overlay graphs preserving shortest 

path lengths. With the multilevel approach, one or 

more levels of overlay graphs which inherit 

shortest-path lengths from the base graph are 

constructed. Then a shortest-path computation 

takes place in a graph consisting basically of one 

of the overlay graphs and some additional edges. 

Procedure to generate overlay graph is given 

below. 

Procedure min-overlay(G, l, S) 

    For each vertex u ∈  S, run Dijkstra’s algorithm 

on G with pairs (le, αe) as edge weights, where αe 

:= −1 if the tail of edge e belongs to S \ {u}, and αe 

:= 0 otherwise. Addition is done pairwise, and the 

order is lexicographic. The result of Dijkstra’s 

algorithm are distance labels (lv, αv) at the vertices, 

where (lu, αu) := (0, 0) in the beginning. For each v 

∈  S \ {u} we introduce an edge (u, v) in E ' with 

length lv if and only if αv = 0. 

 By iteratively applying the min-overlay 

procedure with a sequence of subsets S1, a subset 

of S2, a subset of S3 . . . a subset of Sl of V, we 

obtain a hierarchy Gi = (Si , Ei) of shortest-path 

overlay graphs (for some l ≥ 1). Together with G0 

= (V0, E0) := G, we call this collection of shortest-

path overlay graphs, also denoted by M(G; S1, . . . , 

Sl ), a basic multilevel graph of G with l + 1 levels. 

 

3 Modified  Dijkstra’s algorithm 

with Multilevel Bi-arc flags  
3.1 Combining Bidirectional Arc flags with 
Multilevel Approach  

Given a graph and a subset of its vertices, an 

overlay graph [15] describes a topology defined on 

this subset, where edges correspond to paths in the 

underlying graph. With the multilevel approach, 

one or more levels of overlay graphs which inherit 

shortest-path lengths from the base graph are 

constructed. Then shortest-path computation takes 

place in a graph consisting basically of one of the 

overlay graphs and some additional edges. 

A generalization of a partition-based arc labeling 

technique that is referred to as the arc-flag 

approach [13] is applied to the graph obtained as 

a result of multilevel preprocessing. The basic idea 

of the arcflag method is to use a simple 

rectangular geographic partition. The arc-flag 

approach divides the graph into regions and 

gathers information for each arc on whether this 
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arc is on a shortest path into a given region. In this 

experimental setup, the graph is divided into a 6x6 

matrix. For each arc this information is stored in a 

vector. The vector contains a flag for each region 

of the graph, indicating whether this arc is on a 

shortest path into that particular region. The vector 

is called the arcflag vector and the entries in the 

arc-flag vector are called the arc-flags. The size of 

each vector is determined by the number of 

regions and the number of vectors is determined 

by the number of arcs. Arc-flags are used in the 

Dijkstra computation to avoid exploring 

unnecessary paths. 

The given graph is preprocessed using 

Multilevel technique and Arcflag method. During 

the shortest path computation phase, the edge 

under consideration is checked if it leads to the 

level of target node or not. If yes, then the arcflag 

vector of that particular edge is considered for 

further shortest path computation.   When this 

technique is applied to real world datasets, results 

have been proved to improve the speedup of the 

system. 

The running time of Dijkstra’s algorithm is 

O(nlog n) time for sparse graphs, the overall 

running time is O(n
2
 log n) plus the time to pre-

process the graphs. The pre-processing time is 

dominated by the time needed to compute m times 

a shortest-path tree, which can be done in O(m + 

nlog n) time each. The resulting time complexity 

of the overall pre-processing at each level is, 

therefore, O(m(m+ n + nlog n)). Here, two levels 

are considered at the pre-processing phase. If l is 

the number of levels, it will be l times the overall 

pre-processing. If bidirectional search is adapted 

here the pre-processing time will be reduced by 

half as the searches move from forward and 

reverse direction. 

The both searches expand a tree with branching 

factor b, and the distance from start to target is d, 

each of the two searches has complexity O(b
d/2

), 

and the sum of these two search times is much less 

than the O(b
d
) complexity that would result from a 

single search from the starting node to the target 

using multilevel bidirectional arc flags. 

 

 

 

 

 

 

 

 

 

 

 

Pseudocode 1. Modified Dijkstra’s 

algorithm with Bidirectional Multilevel Arcflags 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Parallelizing the Combining 

Bidirectional Arc flags with Multilevel 

Approach  
The operation that lends itself to 

parallelization is the updation of distance values, 

for the neighbours of a node which is marked 

permanent for all the outgoing arcs of a particular 

region and level. It is to be noted that another 

possibility for parallelism is to run both the 

forward and reverse variants of the algorithm 

simultaneously as independent threads of the 

search process with appropriate synchronization 

constructs for the shared memory access.  

 

 

Input: directed graph G: = (V, A), nonnegative length la  

for all a ∈  A, 

 Start and target nodes s, t ∈  V. 

Output: shortest path from s to t. 

1   begin 

2    TargetRegion:= region number of t; //coarse partition 

3       SubTargetRegion: = subregion number of t; //fine 

partition 

4       level(s) := level of start node s; 

5       level(t) := level of target node t; 

6       Distance(s):=0; 

7       Queue.insert(s,0); 

8       current_level := level(s); 

9        while not Queue.empty do 

10 v :=  Queue.extractMin; 

11 for all outgoing arcs (u,v) do 

12      if level(u)!=current_level  

13                          continue; 

14      current_level := level(u); 

15      if not ArcFlagVectorFirstLevel [(u, v), 

TargetRegion] then 

16     continue; 

17      if (u,v) ∈  TargetRegion then 

18  if not 
ArcFlagVectorSecondLevel[(u,v), SubTargetRegion]      

Then  

     continue; 

21      if distance(u) ≤ distance(v) + l(v,u) then 

22  continue; 

23      distance(u)= distance(v) + l(v,u); 

      if u does not belong to Queue then 

25  Queue.insert(u); 

26      else 

27  Queue.decreaseKey(u); 
28    end 

The above procedure when done simultaneously in the 

forward and backward directions (from step 9 to 27) has been 
proved to lower the running time by a considerable amount. 
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The code segments which can be 

parallelized are embedded in the following work 

sharing constructs. 

#pragma omp for (Used for sharing iterations in a 

loop) 

#pragma omp sections (Specify different work for 

each thread individually) 
Pseudocode 2.  Parallelized Modified Dijkstra’s 

algorithm with Bidirectional Multilevel Arcflags 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: directed graph G: = (V, A), nonnegative length la  for all a 

∈   A, 

 Start and target nodes s, t ∈   V. 

Output: shortest path from s to t. 

1   begin 

2       TargetRegion:= region number of t; //coarse partition 

3       SubTargetRegion: = subregion number of t; //fine partition 

4       level(s) := level of start node s; 

5       level(t) := level of target node t; 

6       Distance(s):=0; 

7       Queue.insert(s,0); 

8       current_level := level(s); 

9        while not Queue.empty do 

10 v :=  Queue.extractMin; 

11 #pragma omp parallel sections 

{ 

12 # pragma omp section 

     { 

13 for all outgoing arcs (u,v) do 

14      if level(u)!=current_level  

15                          continue; 

16      current_level := level(u); 

17      if not ArcFlagVectorFirstLevel [(u, v), 
TargetRegion] then 

18     continue; 

19      if (u,v) ∈   TargetRegion then 

20  if not ArcFlagVectorSecondLevel[(u,v), 

SubTargetRegion]      

then 

     continue; 

21      if distance(u) ≤ distance(v) + l(v,u) then 

22  continue; 

23      distance(u)= distance(v) + l(v,u); 

      if u does not belong to Queue then 

25  Queue.insert(u); 

26      else 

27  Queue.decreaseKey(u); 

  }// end of parallel setion 

28    end 

The above procedure when done simultaneously in the forward 
and backward directions (from step 9 to 27) has been proved to lower 

the running time and number of vertices visited  by a considerable 

amount. 
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3.3 Parallelizing the pre-processing phase of 

Speedup Techniques  

 Using OpenMP, preprocessing phase of 

Arcflags and Multilevel technique were parallelized 

and the resulting technique showed improvements in 

the running time and number of vertices visited 

when applied to random graphs, planar graphs and 

real world data sets. The segment of the code which 

can be parallelized in the speedup technique of arc 

flags method is highlighted in Pseudocode 3. 

 
Pseudocode 3, Parallelizing the preprocessing phase 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the arc flag approach resides in the levels of the 

search process the parallelism works for arc flag is 

activated at each level. In the bidirectional search, 

parallelism (R.Kalpana et al, 2010) is incorporated 

as such in the forward and reverse variants of the 

algorithm simultaneously as independent threads of 

the search process with appropriate synchronization 

constructs for the shared memory access.  

 

4. EXPERIMENTAL SETUP 

Implementation of the proposed 

combination was tested on a PC with AMD Athlon 

X2 Dual Core processor (2.1 Ghz) with 4 GB RAM 

running Ubuntu 9.04. Library of Efficient Date types 

and Algorithms (LEDA) (Algorithmic Solutions 

Software GmbH, 1995) was used for easy 

implementation of various data types such as graphs, 

lists, priority queues, arrays, etc..  

Important metrics for evaluation of the 

techniques like speedup based on run time and the 

number of vertices visited during shortest path 

computation were considered. The proposed 

technique of combining Bidirectional Arcflags and 

Multilevel technique was also implemented and 

experimented on random and planar graphs with 

node count ranging from 100 to 1000 and also for a 

few real world data sets (Map of TamilNadu) and 

the results analysed. Road Map of TamilNadu was 

considered for testing. The first data set consisted of 

17 nodes and 36 edges. The second data set 

consisted of 26 nodes and 62 edges. The third data 

set consisted of 35 nodes and 82 edges. The fourth 

data set consisted of 63 nodes and 146 edges. The 

data set consisted of most of the cities of South 

India.  

 
TABLE I 

COMPARISON OF SPEEDUP WITH RESPECT TO RUN TIME 

 Speedup for 
planar graph  

Speedup for 
random 
graph  

Speedup for 
real world data 
set  

Arcflags  2.33  0.93  0.000000026  

Bidirectional 1.19  1.39  0.25  

Bidirectional 
Arcflags  

1  0.79  0.0000031  

Parallel 
Arcflags  

1.2  0.73  0.000519  

Parallel 
Bidirectional  

0.69  1.32  0.0909  

Parallel 
Bidirectional 
Arcflags  

1  1.08  1.0000019  

Multilevel  0.00001223  0.00001862  2.2436484  

Parallel 
multilevel  

0.99997  1.24932  2.8440908  

Multilevel 
Arcflags  

0.816645  0.698968  2.16999  

Parallel 
Multilevel 
Arcflags  

0.658067  0.846308  2.685  

Bidirectional 
Multilevel 
Arcflags  

0.47441  1.4364802  2.700531  

Parallel 
Bidirectional 
Multilevel 
Arcflags  

0.463149  1.33775  2.91242  

Depending on the source and target nodes, 

the graph is divided into various levels and the 

shortest path computation is done. On an average a 

speedup of 2.91 with respect to run time and a 

speedup of 3.2 with respect to vertex visit count 

were obtained by Parallel Multilevel Bidirectional 

Arcflags.  
The Table I shows the comparison of run 

time for the various speedup techniques in random, 

planar and real world graphs. All the techniques 

#pragma omp parallel sections 

    { 

         # pragma omp section  

            { 
 for all nodes in the graph do 

  # pragma omp section  

             { 

  for i:=1 to 36 do 

    region[i];=false 

    r:=region_y*6 +region_x*6 

    region[r]:=true //set the regions 

reachable from the given node 

    }  

 end 

} // end of the parallel section 
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work moderately well in random graphs. Arc flags 

work very well in planar graphs. The performance of 

multilevel approach combined with other speedup 

techniques always work well in real world graphs. 

Exploiting parallelism using multithreaded 

programming improves the speedup better in most of 

the combinations. The chart demonstrating the same 

is shown in Fig. 1. 

 
Figure 1.Comparison of speed up with respect to run time.  

The Table II shows the comparison of vertex 

visit count for the various speedup techniques in 

random, planar and real world graphs. The output of 

the system will not get worsen in all types of graphs, 

whenever vertex count is considered as output 

metric. Here the results are better than the previous 

metric i.e., speedup with respect to runtime.  Similar 

to the previous case it gives better result when 

parallelism is incorporated. The chart demonstrating 

the same is shown in Fig. 2. 

The speedup techniques presented above worked 

well for a specific type of graph and hence the 

performance was appreciable in those cases. For 

instance, Parallelized Multilevel Bidirectional 

Arcflags achieved a speedup (with respect to run 

time) of nearly 2.91 on real world data sets while its 

performance was considerably low on the planar 

graphs (1.33) generated by the same library, LEDA. 
 

 

 

 

 

 

 

 

 
TABLE II 

COMPARISON OF SPEEDUP WITH RESPECT TO VERTEX 

VISIT COUNT 

 Speedup for 

planar graph  

Speedup 

for 

random 

graph  

Speedup 

for real 

world 

data set  

Arcflags  
1.61  1.023585  1  

Bidirectional 0.69  1.22  1.2368  

Bidirectional 

Arcflags  

2.5571  1.33  1.8125  

Parallel 

Arcflags  

1.50  1.02   1.3437  

Parallel 

Bidirectional  

1.22  1.40  1.2973  

Parallel 

Bidirectional 

Arcflags  

1.13  1.06  2.3888  

Multilevel  1  1  1  

Parallel 

multilevel  

1  1  1  

Multilevel 

Arcflags  

1.002317  1.0206  1.228  

Parallel 

Multilevel 

Arcflags  

1.4272  1.0213  3.307  

Bidirectional 

Multilevel 

Arcflags  

1.7888  2.877  3.066  

Parallel 

Bidirectional 

Multilevel 

Arcflags  

1.867  2.68  3.211  
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Figure 2.  Comparison of speedup with respect 

to vertex visit count. 

The performance of this technique is also 

appreciated with respect to number of nodes 

visited, wherever hop count is a Qos parameter.  

The proposed speed up technique (Parallelized 

Multilevel Bidirectional Arcflags) was able to 

perform better under the same experimental setup 

compared to the other techniques. The 

performance was also seen to have improved on 

real world graphs compared to the graphs 

generated by LEDA. 

 The performance of various combinations 

of speedup techniques with random and planar 

graph are shown in Fig. 3 to 8. The pre-processing 

time is used as the performance parameter in all 

the graphs. 
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Figure 3.        Arcflag 

random graph. 
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Figure 4.        Arcflag  

Planar Graph. 
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Figure 5.        Arcflag 

Real World Dataset. 

The code segments which were 

parallelized in the pre-processing phase have 

reduced the pre-processing time to a considerable 

amount. It is comparatively good in real world 

graphs than other types of graphs.
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Figure 6.        

Bidirectional Arcflag random 

graph. 
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Figure 7.        

Bidirectional Arcflag planar 

graph. 
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Figure 8.        

Bidirectional Arcflag real world 

datasets  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WSEAS TRANSACTIONS on COMPUTERS R. Kalpana, P. Thambidurai

E-ISSN: 2224-2872 211 Issue 7, Volume 11, July 2012



 

 

 

 

 

 

 

 

Multilevel_planar
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Figure 9.       Multilevel 

Planar graph. 
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Figure 10.       Multilevel 

Random graph. 

Multilevel_real world dataset

0.00

0.02

0.04

0.06

0.08

0.10

17 26 35 63

number of vertices

p
re

p
ro

c
e
s
s
 t
im

e

Parallel Preprocess

time

 Preprocess time

 
Figure 11.       Multilevel 

Real World Dataset graph. 
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Figure 12.       Multilevel Arcflags 

Planar graph. 
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Figure 13.       Multilevel Arcflags 

Random graph. 
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Figure 14.       Multilevel Arcflags Real World 
Dataset 
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Figure 15.  Multilevel Bidirectional 

Arcflags Planar graph. 
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Figure 16.  Multilevel Bidirectional 

Arcflags Random graph. 

 

 

 

 

 

Multibiarc_real world dataset
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Figure 17.   Multilevel Bidirectional Arcflags 

Real World Dataset

 

 

The parallelization for the preprocessing phase is 

done using multilevel technique, arc flag technique 

and its combination. The results are represented as 

charts and it shows that the combined technique for 

real world data set gives better results on a relative 

basis. Even though the time for pre-processing is 

high in some of the techniques, the time is effectively 

saved in the shortest path computation phase in those 

cases because of parallelism.  
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Figure 15.  Multilevel Bidirectional 

Arcflags Planar graph. 
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Figure 16.  Multilevel Bidirectional 

Arcflags Random graph. 
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Figure 17.   Multilevel Bidirectional Arcflags  
Real World Dataset 

The technique of combining Bidirectional arc 

flags with multilevel approach(COBAM) achieves a 

very good speedup(≈3) in road networks, moderate 

speedup(1 and above) in random graphs and poor 

speedup(<1) in planar graphs with respect to 

runtime. With respect to number of vertices visited 

it(COBAM) achieves a speedup of equivalently 

better i.e, a very good speedup(3 and above) in road 

networks, moderate speedup((≈3) in random graphs 

and poor speedup((≈2) in planar graphs

.  
 

 

 

5. CONCLUSION 
The optimization technique works well for 

combining three speedup techniques namely 

bidirectional search, Multilevel approach and Arc 

flag method. The new speedup technique performs 

well on all three types of graphs namely random, 

planar and real world graphs. The performance of 

the new speedup technique is extremely good on 

real world graphs. Preprocessing phase considerably 

improved the speedup of the system by reducing the 

runtime of the technique and reducing the number of 

nodes visited during the shortest path computation.  

The optimization can be extended with other 

types of real world graphs and new combinations. 

Various partitioning strategies can also be 

considered in arc flags to improve the performance 

of the combining speedup technique. 
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